Monitoring guanine photo-oxidation by enantiomerically resolved Ru(II) dipyridophenazine complexes using inosine-substituted oligonucleotides.

نویسندگان

  • Páraic M Keane
  • Fergus E Poynton
  • James P Hall
  • Ian P Clark
  • Igor V Sazanovich
  • Michael Towrie
  • Thorfinnur Gunnlaugsson
  • Susan J Quinn
  • Christine J Cardin
  • John M Kelly
چکیده

The intercalating [Ru(TAP)2(dppz)](2+) complex can photo-oxidise guanine in DNA, although in mixed-sequence DNA it can be difficult to understand the precise mechanism due to uncertainties in where and how the complex is bound. Replacement of guanine with the less oxidisable inosine (I) base can be used to understand the mechanism of electron transfer (ET). Here the ET has been compared for both Λ- and Δ-enantiomers of [Ru(TAP)2(dppz)](2+) in a set of sequences where guanines in the readily oxidisable GG step in {TCGGCGCCGA}2 have been replaced with I. The ET has been monitored using picosecond and nanosecond transient absorption and picosecond time-resolved IR spectroscopy. In both cases inosine replacement leads to a diminished yield, but the trends are strikingly different for Λ- and Δ-complexes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reversal of a Single Base‐Pair Step Controls Guanine Photo‐Oxidation by an Intercalating Ruthenium(II) Dipyridophenazine Complex†

Small changes in DNA sequence can often have major biological effects. Here the rates and yields of guanine photo-oxidation by Λ-[Ru(TAP)2(dppz)](2+) have been compared in 5'-{CCGGATCCGG}2 and 5'-{CCGGTACCGG}2 using pico/nanosecond transient visible and time-resolved IR (TRIR) spectroscopy. The inefficiency of electron transfer in the TA sequence is consistent with the 5'-TA-3' versus 5'-AT-3' ...

متن کامل

Synthesis and characterization of iridium(III) cyclometalated complexes with oligonucleotides: insights into redox reactions with DNA.

Heteroleptic cyclometalated complexes of Ir(III) containing the dipyridophenazine ligand are synthesized through the direct introduction of a functionalized dipyridophenazine ligand onto a bis(dichloro)-bridged Ir(III) precusor and characterized by 1H NMR, mass spectrometry, as well as spectroscopic and electrochemical properties. The excited state of the Ir(III) complexes have sufficient drivi...

متن کامل

Charge separation in a ruthenium-quencher conjugate bound to DNA.

A novel tris heteroleptic dipyridophenazine complex of ruthenium(II), [{Ru(phen)(dppz)(bpy'-his)}{Ru(NH3)5}]5+, containing a covalently tethered ruthenium pentammine quencher coordinated through a bridging histidine has been synthesized and characterized spectroscopically and biochemically in a DNA environment and in organic solvent. Steady-state and time-resolved luminescence measurements indi...

متن کامل

Oxidative damage by ruthenium complexes containing the dipyridophenazine ligand or its derivatives: a focus on intercalation.

Interactions with DNA by a family of ruthenium(II) complexes bearing the dppz (dppz = dipyridophenazine) ligand or its derivatives have been examined. The complexes include Ru(bpy)(2)(dppx)(2+) (dppx = 7,8-dimethyldipyridophenazine), Ru(bpy)(2)(dpq)(2+) (dpq = dipyridoquinoxaline), and Ru(bpy)(2)(dpqC)(2+) (dpqC = dipyrido-6,7,8,9-tetrahydrophenazine). Their ground and excited state oxidation/r...

متن کامل

Photo-reactive Ru(II)-oligonucleotide conjugates: influence of an intercalating ligand on the inter- and intra-strand photo-ligation processes.

The damaging efficacy towards OligoDeoxyriboNucleotides (ODNs) of two photoreactive polyazaaromatic ruthenium(II) complexes, Ru(T) and Ru(D), has been evaluated. Both compounds correspond to the known [Ru(TAP)(2)(dppz)](2+) complex, but they are anchored differently to a guanine-containing single strand ODN (probe strand). This has allowed us to investigate the influence of the interactions exi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Faraday discussions

دوره 185  شماره 

صفحات  -

تاریخ انتشار 2015